О наличии четвёртого, пятого и более измерений

Опубликовано admin - чт, 19/08/2010 - 05:29

Самой долгой историей научных дискуссий из всех типов параллельных вселенных может похвастаться параллельная вселенная высших измерений. Здравый смысл и органы чувств говорят нам, что мы живём в трёх измерениях - длина, ширина и высота. Как бы мы ни двигали объект в пространстве, его положение всегда можно описать этими тремя координатами. Вообще, этими тремя числами человек может  определить точное положение любого объекта во Вселенной, от кончика своего носа до самых отдалённых галактик.

На первый взгляд четвёртое пространственное измерение противоречит здравому смыслу. К примеру, когда дым заполняет всю комнату, мы не видим, чтобы он исчезал в другом измерении. Нигде в нашей Вселенной мы не видим объектов, которые внезапно исчезали бы или уплывали в иную вселенную. Это означает, что высшие измерения, если таковые существуют, по размеру должны быть меньше атома.

Три пространственных измерения образуют фундамент, основу греческой геометрии. К примеру, Аристотель в трактате "О небе" писал:

"Величина, делимая в одном измерении, есть линия, в двух - плоскость, в трёх - тело, и, кроме них, нет никакой другой величины, так как три измерения суть все измерения".

В 150 г. н. э. Птолемей Александрийский предложил первое "доказательство" того, что высшие измерения "невозможны". В трактате "О расстоянии" он рассуждает следующим образом. Проведём три взаимно перпендикулярные прямые линии (как линии, которые образуют угол комнаты). Очевидно, провести четвёртую линию, перпендикулярную трём первым, невозможно, следовательно, четвёртое измерение невозможно.

На самом деле ему удалось доказать таким образом только одно: наш мозг не способен наглядно представить себе четвёртое измерение. С другой стороны, компьютеры постоянно занимаются расчётами в гиперпространстве.

На протяжении двух тысячелетий любой математик, который отваживался заговорить о четвёртом измерении, рисковал подвергнуться насмешкам. В 1685 году математик Джон Уоллис в полемике о четвёртом измерении назвал его "чудовищем в природе, возможным не более, нежели химера или кентавр". В XIX веке "король математиков" Карл Гаусс разработал математику четвёртого измерения в значительной степени, но побоялся публиковать результаты, опасаясь негативной реакции. Сам он, однако, проводил эксперименты и пытался определить, действительно ли чисто трёхмерная греческая геометрия правильно описывает Вселенную. В одном из экспериментов он поместил трёх помощников на вершинах трёх соседних холмов. У каждого помощника был фонарь; свет всех треё фонарей образовал в пространстве гигантский треугольник. Сам же Гаусс тщательно измерил все углы этого треугольника и, к собственному разочарованию, обнаружил, что сумма внутренних углов треугольника действительно составляет 180°. Из этого учёный заключил, что если отступления от стандартной греческой геометрии и существуют, то они настолько малы, что их невозможно обнаружить подобными способами.

Картина: Роб Гонсалвес (Rob Gonsalves), Канада, стиль "магический реализм"
Картина: Роб Гонсалвес (Rob Gonsalves), Канада, стиль "магический реализм"
 

В результате честь описать и опубликовать основы математики высших измерений выпала Георгу Бернхарду Риману, ученику Гаусса. (Через несколько десятилетий эта математика целиком вошла в общую теорию относительности Эйнштейна.) На своей знаменитой лекции в 1854 г. Риман одним махом опрокинул 2000 лет владычества греческой геометрии и установил основы математики высших, криволинейных измерений; мы и сегодня пользуемся этой математикой.

В конце XIX в. замечательное открытие Римана прогремело по всей Европе и вызвало широчайший интерес публики; четвертое измерение произвело настоящую сенсацию среди артистов, музыкантов, писателей, философов и художников. Скажем, историк искусства Линда Дальримпл Хендерсон считает, что кубизм Пикассо возник отчасти под впечатлением от четвертого измерения. (Портреты женщин кисти Пикассо, на которых глаза смотрят вперед, а нос находится сбоку, представляют собой попытку представить четырехмерную перспективу, ведь при взгляде из четвертого измерения можно одновременно видеть лицо, нос и затылок женщины.) Хендерсон пишет: «Подобно черной дыре, четвертое измерение обладало загадочными свойствами, которые не удавалось до конца понять даже самим ученым. И все же четвертое измерение было гораздо более понятным и представимым, чем черные дыры или любые другие научные гипотезы после 1919 г., за исключением теории относительности».

Но исторически сложилось так, что физики рассматривали четвертое измерение лишь как забавную диковинку. Никаких свидетельств существования высших измерений не было. Положение начало меняться в 1919 г., когда физик Теодор Калуца написал очень спорную статью, в которой намекнул на существование высших измерений. Начав с общей теории относительности Эйнштейна, он поместил ее в пятимерное пространство (четыре пространственных измерения и пятое — время; поскольку время уже утвердилось как четвертое измерение пространства-времени, физики теперь называют четвертое пространственное измерение пятым). Если делать размер Вселенной вдоль пятого измерения все меньше и меньше, уравнения волшебным образом распадаются на две части. Одна часть описывает стандартную теорию относительности Эйнштейна, зато другая превращается в теорию света Максвелла!

Это стало поразительным откровением. Возможно, тайна света скрыта в пятом измерении! Такое решение шокировало даже Эйнштейна; казалось, оно обеспечивает элегантное объединение света и гравитации. (Эйнштейн был так потрясен предположением Калуцы, что два года раздумывал, прежде чем дал согласие на публикацию его статьи.) Эйнштейн писал Калуце: «Идея получить [объединенную теорию] посредством пятимерного цилиндра никогда не пришла бы мне в голову... С первого взгляда мне ваша идея чрезвычайно понравилась... Формальное единство вашей теории поразительно».

Много лет физики задавались вопросом: если свет — это волна, то что, собственно, колеблется? Свет способен преодолевать миллиарды световых лет пустого пространства, но пустое пространство — это вакуум, в нем нет никакого вещества. Так что же колеблется в вакууме? Теория Калуцы позволяла выдвинуть по этому поводу конкретное предположение: свет — это настоящие волны в пятом измерении. Уравнения Максвелла, точно описывающие все свойства света, получаются в ней просто как уравнения волн, которые двигаются в пятом измерении.

Представьте себе рыб, плавающих в мелком пруду. Возможно, они даже не подозревают о существовании третьего измерения, ведь их глаза смотрят в стороны, а плыть они могут только вперед или назад, вправо или влево. Возможно, третье измерение даже кажется им невозможным. Но теперь вообразите себе дождь на поверхности пруда. Рыбы не могут видеть тре¬тье измерение, но они видят тени и рябь на поверхности пруда. Точно так же теория Калуцы объясняет свет как рябь, которая двигается по пятому измерению.

Калуца дал также ответ на вопрос, где находится пятое измерение. Поскольку мы не видим вокруг никаких признаков его существования, оно должно быть «свернутым» до столь малой величины, что заметить его невозможно. (Возьмите двумерный лист бумаги и плотно скатайте его в цилиндр. Издалека цилиндр будет казаться одномерной линией. Получается, что вы свернули двумерный объект и сделали его одномерным.)

На протяжении нескольких десятилетий Эйнштейн принимался время от времени работать над этой теорией. Но после его смерти в 1955 г. теорию быстро забыли, она превратилась в забавное примечание на страницах истории физики.

 

Фрагмент из книги Петра Д. Успенского "Новая модель вселенной":

Идея существования скрытого знания, превосходящего знание, которое человек может достичь собственными усилиями, растет и укрепляется в умах людей при понимании ими неразрешимости многих стоящих перед ними вопросов и проблем.

Человек может обманывать себя, может думать, что его знания растут и увеличиваются, что он знает и понимает больше, нежели знал и понимал прежде; однако иногда он становится искренним с самим собой и видит, что по отношению к основным проблемам существования он так же беспомощен, как дикарь или ребенок, хотя и изобрел множество умных машин и инструментов, усложнивших его жизнь, но не сделавших ее понятнее.
Говоря с самим собой еще откровеннее, человек, возможно, признает, что все его научные и философские системы и теории сходны с этими машинами и инструментами, потому что они только усложняют проблемы, ничего не объясняя.

Среди окружающих человека неразрешимых проблем две занимают особое положение – проблема невидимого мира и проблема смерти.

Все без исключения религиозные системы, от таких богословски разработанных до мельчайших деталей, как христианство, буддизм, иудаизм, до совершенно выродившихся религий "дикарей", которые кажутся современному знанию "примитивными", – все они неизменно делят мир на видимый и невидимый. В христианстве: Бог, ангелы, дьяволы, демоны, души живых и мертвых, небеса и ад. В язычестве: божества, олицетворяющие силы природы, – гром, солнце, огонь, духи гор, лесов, озер, духи вод, духи домов – все это принадлежит невидимому миру.
В философии признается мир явлений и мир причин, мир вещей и мир идей, мир феноменов и мир ноуменов. В индийской философии (особенно в некоторых ее школах) видимый, или феноменальный, мир, майя, иллюзия, которая означает ложное понятие о невидимом мире, вообще считается несуществующим.
В науке невидимый мир – это мир очень малых величин, а также, как это ни странно, очень больших величин. Видимость мира определяется его масштабом. Невидимый мир представляет собой, с одной стороны, мир микроорганизмов, клеток, микроскопический и ультрамикроскопический мир; далее за ним следует мир молекул, атомов, электронов, "колебаний"; с другой же стороны, – это мир невидимых звезд, далеких солнечных систем, неизвестных вселенных.

Микроскоп расширяет границы нашего зрения в одном направлении, телескоп – в другом, но оба весьма незначительны по сравнению с тем, что остается невидимым.

Физика и химия дают нам возможность исследовать явления в таких малых частицах и в таких отдаленных мирах, которые никогда не будут доступны нашему зрению. Но это лишь укрепляет идею о существовании огромного невидимого мира вокруг небольшого видимого.
Математика идет еще дальше. Как уже было указано, она исчисляет такие соотношения между величинами и такие соотношения между этими соотношениями, которые не имеют аналогий в окружающем нас видимом мире. И мы вынуждены признать, что невидимый мир отличается от видимого не только размерами, но и какими-то иными качествами, которые мы не в состоянии ни определить, ни понять и которые показывают нам, что законы, обнаруживаемые в физическом мире, не могут относиться к миру невидимому.
Таким образом, невидимые миры религиозных, философских и научных систем в конце концов теснее связаны друг с другом, чем это кажется на первый взгляд. И такие невидимые миры различных категорий обладают одинаковыми свойствами, общими для всех. Свойства эти таковы. Во-первых, они непостижимы для нас, т.е. непонятны с обычной точки зрения или для обычных средств познания; во-вторых, они содержат в себе причины явлений видимого мира.

Идея причин всегда связана с невидимым миром. В невидимом мире религиозных систем невидимые силы управляют людьми и видимыми явлениями. В невидимом мире науки причины видимых явлений проистекают из невидимого мира малых величин и "колебаний".
В философских системах феномен есть лишь наше понятие о ноумене, т.е. иллюзия, истинная причина которой остается для нас скрытой и недоступной.

Таким образом, на всех уровнях своего развития человек понимал, что причины видимых и доступных наблюдению явлений находятся за пределами сферы его наблюдений. Он обнаружил, что среди доступных наблюдению явлений некоторые факты можно рассматривать как причины других фактов; но эти выводы были недостаточны для понимания всего, что случается с ним и вокруг него. Чтобы объяснить причины, необходим невидимый мир, состоящий из "духов", "идей" или "колебаний".
 

* * *

 

Рассуждая по аналогии с существующими измерениями, следует предположить, что если бы четвертое измерение существовало, то это значило бы, что вот здесь, рядом с нами находится какое-то другое пространство, которого мы не знаем, не видим и перейти в которое не можем. В эту "область четвертого измерения" из любой точки нашего пространства можно было бы провести линию в неизвестном для нас направлении, ни определить, ни постигнуть которое мы не можем. Если бы мы могли представить себе направление этой линии, идущей из нашего пространства, то мы увидели бы "область четвертого измерения".

Геометрически это значит следующее. Можно представить себе три взаимно-перпендикулярные друг к другу линии. Этими тремя линиями мы измеряем наше пространство, которое поэтому называется трехмерным. Если существует "область четвертого измерения", лежащая вне нашего пространства, значит, кроме трех известных нам перпендикуляров, определяющих длину, ширину и высоту предметов, должен существовать четвертый перпендикуляр, определяющий какое-то непостижимое нам, новое протяжение. Пространство, измеряемое четырьмя этими перпендикулярами, и будет четырехмерным.

Невозможно ни определить геометрически, ни представить себе этот четвертый перпендикуляр, и четвертое измерение остается для нас крайне загадочным. Существует мнение, что математики знают о четвертом измерении что-то недоступное простым смертным. Иногда говорят, и это можно встретить даже в печати, что Лобачевский "открыл" четвертое измерение. В последние двадцать лет открытие "четвертого" измерения часто приписывали Эйнштейну или Минковскому.

В действительности, математика может сказать о четвертом измерении очень мало. В гипотезе о четвертом измерении нет ничего, что делало бы ее недопустимой с математической точки зрения. Она не противоречит ни одной из принятых аксиом и потому не встречает особого противодействия со стороны математики. Математика вполне допускает возможность установить отношения, которые должны существовать между четырехмерным и трехмерным пространством, т.е. некоторые свойства четвертого измерения. Но делает она все это в самой общей и неопределенной форме. Точное определение четвертого измерения в математике отсутствует.

Четвертое измерение можно считать доказанным геометрически только в том случае, когда определено направление неизвестной линии, идущей из любой точки нашего пространства в область четвертого измерения, т.е. найден способ построения четвертого перпендикуляра.

Трудно даже приблизительно обрисовать, какое значение для всей нашей жизни имело бы открытие четвертого перпендикуляра во вселенной. Завоевание воздуха, способность видеть и слышать на расстоянии, установление сношений с другими планетами и звездными системами – все это было бы ничто по сравнению с открытием нового измерения. Но пока этого нет. Мы должны признать, что мы бессильны перед загадкой четвертого измерения, – и попытаться рассмотреть вопрос в тех пределах, которые нам доступны.

При более близком и точном исследовании задачи мы приходим к заключению, что при существующих условиях решить ее невозможно. Чисто геометрическая на первый взгляд, проблема четвертого измерения геометрическим путем не решается. Нашей геометрии трех измерений недостаточно для исследования вопроса о четвертом измерении, так же как одной планиметрии недостаточно для исследования вопросов стереометрии. Мы должны обнаружить четвертое измерение, если оно существует, чисто опытным путем, – а также найти способ его перспективного изображения в трехмерном пространстве. Только тогда мы сможем создать геометрию четырех измерений.

Самое поверхностное знакомство с проблемой четвертого измерения показывает, что ее необходимо изучать со стороны психологии и физики.

Четвертое измерение непостижимо. Если оно существует и если все же мы не в состоянии познать его, то, очевидно, в нашей психике, в нашем воспринимающем аппарате чего-то не хватает, иными словами, явления четвертого измерения не отражаются в наших органах чувств. Мы должны разобраться, почему это так, какие дефекты вызывают нашу невосприимчивость, и найти условия (хотя бы теоретические), при которых четвертое измерение становится понятным и доступным. Все эти вопросы относятся к психологии или, возможно, к теории познания.

Мы знаем, что область четвертого измерения (опять-таки, если она существует) не только непознаваема для нашего психического аппарата, но недоступна чисто физически. Это уже зависит не от наших дефектов, а от особых свойств и условий области четвертого измерения. Нужно разобраться, что за условия делают область четвертого измерения недоступной для нас, найти взаимоотношения физических условий области четвертого измерения нашего мира и, установив это, посмотреть, нет ли в окружающем нас мире чего-либо похожего на эти условия, нет ли отношений, аналогичных отношениям между трехмерными и четырехмерными областями.

Вообще говоря, прежде чем строить геометрию четырех измерений, нужно создать физику четырех измерений, т.е. найти и определить физические законы и условия, существующие в пространстве четырех измерений.

"Мы не можем решать проблемы, используя те же подходы в мышлении, которые мы использовали, чтобы создать проблемы." (Альберт Ейнштейн)

 

via quantum-tech.ru и blogs.mail.ru/chudatrella.